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The problem of a passive scalar advected by a correlated-in-time Gaussian random velocity field is consid-
ered. The equation for the probability densR¢AT,r) of the scalar differences is derived. This equation
resembles the nonlinear Boltzmann equation reflecting the fact that the scalar fluctuations carried by the
velocity field along adjacent trajectories can interact due to the action of finite diffusivity. It is shown that the
probability density of the scalar differences has algebraic tails in the scale-invariant range and that the mo-
mentsS,=((AT)") with n<p obey “normal scaling”S,r "1 with &=const, while all moments with>p
behave a§n>pocr‘5, where both¢ andp depend on parameters of the probld®1063-651X96)12608-§

PACS numbds): 47.10+g, 02.50-r

I. INTRODUCTION Son(HA(T)
Jon=2n TS )
The recent surge in interest in the problem of a passive
scalar advected by a correlated-in-time random velocity fieldyhere
has been motivated by Kraichnan's suggestion that the high-
order moments of the scalar differenéssucture functions A(r)=k(V2S,(0)— V2S,(r)).
governed by this equation, scale®g={((AT)?")er n with
the exponentst,,>2n whenn is large enougt1]. This Then, setting r/lL=0 in the inertial range and
phenomenon is called “anomalous scaling” contrary to theA(r) = kV?S,(0)=—1 gives
“normal scaling” &,=n¢&,, where &=const, equal to the
scaling exponent of one of the low-order structure functions. ’7_52n_ 2 i d—1+n ﬁ_ —n 52n 6)
Kraichnan considered the equation for a passive scalar, ot 9 Tyr ar S2
dT(X) dT(X) PT(x) The most important feature ¢®) is that it is a homogeneous
ot +0i(x) —I—f(x D+« ENN (1 equation and one can calculate the scaling expongptby
' simple power counting. Assuming that
where decorrelated-in-time incompressible velocity field
V,v;=0 is defined by the correlation function Son(r)=Apyr é2n )
vi(x,t)vj(x,t’)—vi(x,t)vj(x’,t’)ocr“(S(t—t’) 2 gives Kraichnan’s scaling exponents:
and the forcing function(f?=1) acts at the large scales En=13 VAndé,+(d—£,)%— 1 (d—§&y). (8)
only, so that its structure functiog(r)=[f(x+r)—f(x)]?
=0((r/L)?) and is negligibly small in the inertial range In the limit n>1 we have§2n:0(\/ﬁ). Whenn—0
wherer/L<1. We denoteb(r)=(v2—v(x)v(x'))=r", set
L=1, and consider € %<2 in what follows. The equations déon
for the momentsS,,, are derived from(1) with the result: Ean~ d—& #n& (£=2—17).
9Son —i—i pd=1+7 ‘9_52H+JZ —2n(2n-1) Thus, the model does not generate scalar fluctuations with
gt retor ar A the structure functionS,(r) obeying “normal” scaling even
(2 when n<1. For example, whem=4/3, &,=2/3, andd=3,
Son_2, (3) the expressior8) gives &/£~0.55. Whené,—2 this ratio
tends to 2. This property of Kraichnan’s is striking since,

if correct, it makes the system governed(lty very different
from anything encountered in real life and numerical flows,
_ _ 2n-1/v2 v2 _ where normal scaling for some of the low-order moments
Jon=2nK([T(2)=T(1)] (Vi+Vo)lT(2) T(l)]>'(4) and anomalous scaling for the high-order ones is usually

reported and the observed ratig’é;=2 with a very good

To close the system of equations one has to calculate th&ccuracy.

correlation function(4), which is a very difficult task. Based Let us show that none of the Kraichnan exponéBj<an
on the symmetries of the problem and some qualitative conbe derived perturbatively in terms of powers of deviations

siderations, Kraichnan postulated an expression: from a scaling solution. It is easy to sgg that Kraichnan’s

where
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suggestion corresponds to the following equation for thements,” and another ond®,=r ¢(Au/u,, dominated by
probability density functiofPDF) P(AT,r): the contribution from coherent structures giving rise to the
anomalous scaling. It is important that,,s is the

JP 2 4 JP ; . . .
o O d-14p 07 r-independent value of the rms single-point velocity fluctua-
gt r9Tor ' ar IAT H(AT.NP(AT.N) tions. The tails of the PDF are dominated By.
2 2
+ (E) ﬁ P(AT.I), Il. EQUATIONS FOR THE PROBABILITY DENSITY
© Let us consider the generating function
—{MT@2) =TI = (AT
whereH(AT,r) is the conditional expectation value of the Z-=(e )=(e"). (13
operator The equation of motion is
P 9 2
9z _ 2 9 0z _ r
K| —=+—|AT T Y od-1+p Yoo 2 =
Xy oX ot i Tgr " o I-tA L) z- (9
for fixed AT. Kraichnan’s closure is obtained fro®) ne- g9
glecting theO((r/L)?) contribution and postulating
J_=\w([V3T(2)-ViT(1)]e}), (15)

H(AT,r)=—d&AT/Sy(r). (10
whereV;=4d/dx; andT(i)=T(x;). It will be useful for what

. . 2 —_ i
In this expression we have seV<S,(0)=—1 so that in what follows to introduce

follows S,(r)=r¢2.
We seek the zero-order solution of the equation of motion Z, =(eMT@FTMhy =\ T+) (16)
in a scaling form:
which obeys the following equation of motion:

1
P(AT,r)=— F(x), (11 2
' N A O S RPN P L P
. _ _ gt r9 tor ar * L o
wherex=AT/r* with a=§&,/2>0. The resulting equation for (17)
F(X) is
where
2a?x%F' (x) + AXF(x)=0, (1139
J.=Ak([V3T(2)+V3T(1)]e+). 18
whereA=2a?—2(d— &,)a+dé&,. The constant in the right +=A([V2T(2)+VIT(D)1eT) (18
side of (11) is chosen to be equal to zero sinégx) The main difficulty is in the evaluation of the correlation
=F(—x). The solution to this equation is functionJ_ since it involves calculation of the infinite chain

of the correlation functions. Indeed, simple integration by
parts in the relatiorf15) gives

where u=A/2¢. In a case, treated in the numerical experi- — 2 AT
ments%y Chen3], d=2, &£=112, a=&~1/4, A=3/8, an% J-= A ([er(D)Fer(2)]e). (19
n=3. We see that Kraichnan’s theory does not admit scalingye see that the equation for the PDF of the scalar difference
solution(11) and thus, no perturbative treatment in terms ofis not closed since we have to calculate the correlation func-
deviation from “normal” scaling is possible. THB((r/L)®) tion involving the dissipation rates . Substituting the equa-
contribution, neglected in the derivation @f1) regularizes  tjon for the scalar variance inttl9) we have to face the
the theory leading to the anomalous scaling. It is difficult, gifficulty of evaluating the correlation functions involving
however, to explain such a strong direct influence of theTZ(Z)—TZ(l)z[T(2)—T(1)][T(2)+T(1)] andthus, as in
large-scale rapidly changing in time source on the inertiathe problem of the Burgers equation, we have to deal with
range ) correlation ofT_=T(2)—-T(1) with T,=T(2)+T(1). The
(r/L—0) dynamics of the scalar. _ origin of this difficulty can be traced to the fact that the
The purpose of this work is to present an alternative equapobability density of the scalar difference must be obtained

tion of motion for the probability density of the scalar dif- from the general two-point correlation function given by
ferences, leading to the scale-invariant PDF but still giving

anomalous scaling of the high-order structure functions. We zlzz(eMT<1>+%2T<2>>:(e%TjAH) (20)

will explore some of the ideas which proved to be extremely

fruitful in investigation of the dynamics of the fluctuations in the limit r—0, wherex=3(\,—\;) and A=3(\,+\,). It
generated by the random-force-driven Burgers equation. Farill be shown below that the dissipation terms couple

this problem a satisfactory dynamic theory has recently beeandT _ and that is why the calculation df. andJ, is not a
developed4-7]. There it has been shown that the probabil-simple matter.

ity density of the velocity differencAu=u(2)—u(1) con- Before we proceed further, let us discuss some conse-
sists of two contributionsP(Au,r)= 1 *F(Au/r*), which  quences of the relations presented above. First of all, we
is responsible for the “normal scaling of the low-order mo- have in a statistically steady state:

F(X)ocx™#, (12
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2 9 4 ... 0% - whereP(T/T, .4 is the single-point probability density and
a1 10T e =nn= 1([er(1) +er(2)]TI). in the scale-invariant ranges(r)=(r/L)é+ with &,=&
21) [¢(r)—0] whenr—0. This assumption reflects the fact that
in the limit T_0 andr —0 the PDFP(T, ,r)—P(T). All this
The equation foiZ,, is gives
(9212 2 J d-1+7 (9212 f - f - Z+%[1+ l/l(r/L)]Zs(AT)
Tt I r Jizt AN (Df())Z12, and
(22)
7. = eZAT .
where -~ )
5 ) AT AT Equations(14) and(15) must follow (23) in the limit r —0.
J1o=k([N2V5T(2)+ N, VIT(1)]er -27) We assume that
or 1= (2234 (M) +Z,3-(M)]¥(Z-.,2,),
J1o= k({N[V3T(2)— V2T(1)]+ A[V5T(2) where the functionaW¥(Z, ,Z_) is to be determined from
the theory. Substituting this expression iri5) we find
VRT(D)]}T- AT, 23 y g P "ED)
) L 02y 9Z_
We can see that the generating functidp can be repre- —4r -
ar or Ji(A)
sented as J_(\)= -7 ]
Z.[¥(Z,,2-)—-1] Z.(A)
L1p=2_7,, (24) . . . .
Using the approximate relations far, , introduced above,
provided we can see that this expression defines a functional
J_(\T_,Z_), calculation of which is, in general, a difficult
G 0Ly 9Z_ task since we have to know the functidh However, luck-

—ar ar  or =Jd127Z2-3:(M)=Z,:3-(\) (29 jly, one can arrive in the nontrivial conclusions, assuming
thatJ_(Z_) can be represented as a series:
with J,, defined by(23). In general this assumption is incor-

d
rect. 2 2 3
. : J_=N(CZ_+bZZ+dZZ+---)+Naf(r) —Z_,
Now, following Polyakov[4], we assume that in the (€ ) ( )a)\
scale-invariant regime whan-0 andT _ <T,,s the Fourier- (26)

Laplace transform of the generating functi@q,(\,A) is . ]
dominated by the range ok =O(1/T,,J<1T_=0(\).  Which corresponds to the anzatx—O0):

This means that onhA—0 contributes taZ,,, or, in other
words[4] v(Z_,Z 9(-) +1
1 T ST — .
( — +) rnlﬂ,(r/L)Z+
leoc 5(A) . . .
The expression fo®(Z_) is found readily from(26).
The probability density in this limit T_<T,,J can be The last contribution t§26), which appears in the lowest
written as[4] order of the expansion in powers of small , was added
due to the following considerations. Take a simple linear
T_ T, equation:
P(T(1),T(2))=P| % |W|+—].
r rms T _ P2T(X)
= , K .
This relation is equivalent t24) and it is clear that it is ot IX;

valid only whenT_ is small. WhenT_=T,,s we can see ) i . )
from the equation of motion that the variables cannot bel "€ exact steady-state solution of this equation, obeying
separated and the probability densRyT(1)—T(2)) is not Gaussian statistics of the forcing function, can be written
invariant under the transformatioh—T+C since its tails down immediately. The equation of motion for the generat-
are dominated by the single-point PIET). In other words, N9 function of the scalar difference, corresponding to this
the tails of the probability densitip(T_)xo(T_/T,,o). The  €quationis
importance of this very basic fact was noticed by Polyakov

2
in the theory of the Burgers turbulenf4]. az_*:\]_+)\2 L) i
In this limit the generating function ot L
Z, =(e2ATAT-y Since we know the solution of the problem, the expres-
sion forJ_ is found readily and
leads to (AT 4
N((Af)2Z_ + N —2Z_ =0.
P(T,.r)~[1+¢(r)]P(T/T/ms), (A1) Sy(r) IN
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AThe expression fod _, defined by this equation, corresponds ,

to the exact solution of a diffusion equation with Gaussian C:f P(y,r)P(y—T_ ,r)dy~J P(y,r)P(y—T_,r)dy
source in the right side. The linear equation of an advected

passive scalar can be represented in terms of the effective +P(T_,r),

(“eddy™) diffusivity easily extracted fron3). The solution . ) o

of a problem would be a simple matter, if only the contribu-WhereJ” is the integral over the rangeT,<T<T, giving
tions coming from “molecular diffusivity” x could be ne- the dominant contribution to the normalization integral:
glected. As we saw above this is not the case andJthe

contribution, given by(26), is vitally important. This is be- j P(x)dx=1.

cause the dynamics of a passive scalar consists of two com-

peting ProCESSES. One is a mere kinematic adv_ection of_a It will be shown below that near the origin the PDF
scalar which does not lead to the decay of its variance. Th|§,(.|._) is a broad function oT _, so that we approximate the

process 1s a_lccgrately descnbe_d by the effective dIﬁus'v'ty‘first contribution to the right side of the equation for collision
The expansion in powers &_, introduced above, accounts integralC as

for an additional physical phenomenon, caused by the mo-
lecular diffusivity, which means that we are looking for the ,
solution in terms of deviations from the zero-molecular- f P(y,r)P(y—T_,r)dy=f(r)P¥T_),
diffusivity trivial theory. The physical meaning of this ex-

pansion becomes more clear if we write the equation for theyhere f(r) is easily found for the scale-invariant solutions
probability densityP(T_,r). In the units in whichS,(r)  (see below. With these approximations we have the differ-

=r&, where&=2— 7 the equation of motion is ential equation for the PDF:
P 2 9 op R P 2 li a1y P
- 2 d-1+9 20 - gt r9Tor a
T ar 2% g5 P00 T Pz
i =adé, = g~ P(T-.r)+cdé —— P(T_r)
+cdé, — P(T_ 1) aT_ Sy(r) JT2
aT= 2
072 +bd§2f(l’) F PZ(T, ,I’), (28)
+bdé; —— f P(y,r) ‘

wherec=c;+b. Let us discuss the interesting cases:0
XP(y—T_,r)dy+--- . andd—c corresponding to the Gaussian passive scalar dy-
27) namics. Whennp=0 the only possible velocity field ig=0
and(1) and(2) describe the diffusivity-dominated linear dif-
fusion problem. Whermd—ce, Eq. (1) generates the scalar
fluctuations corresponding to the weak-coupling Gaussian
limit. In principle, we have to havé=f(r,»,d) such that
f(r,n,d)—0 in the limits —0 ord—-oe. Then, Eq{(28) with
zero left side gives the desired Gaussian PDF. Whei®

Now we can see that this equation is simply the Boltz-
mann equation for the probability densiB(T_ ,r) taking
into account binary, triple, etc., collisions between the fluc-

tuations of the passive scalar. In the zero-diffusivity limit, . e H
dut is small ord is finite but large, one can develop a per-

when the scalar is merely carried around by the incompres bati ) d this G : d |
ible velocity field, the particles from the adjacent trajectoriesi!ation expansion around this Gaussian state and evaluate

do not interact. Finite diffusivity, considered in this work, gigh-o_rd_er moments of thebscalar d(ijf;irelnces. Tgis Eas been
introduces the “defects” allowing migration of the scalar 9°"€ N lmportan';}paperls( y Gawe |a.[§]_anh Chert-
between different trajectories, thus leading to transitioné‘ov eta.[9_]. In_t IS work we are interested in t (_acag,e_of
(T_,r)—(T" r) described by the collision term i{27). In 77:0(1.) which is far from a pure d|ﬁu5|v9_ Gaussian I|m_|t.
what follows we restrict ourselves to binary collisions only Thus, in fact, EG(28) is based on an additional assumption

and will show below that accounting for the multiple colli- that the function f(r,»,d) has a universal,7- and

sfon conbutons doe notchange he shape of e tas SCPETert Tt e SUE 1 O 08 L
the PDF. It is interesting that this equation preserves all con- S N
does not tend to a Gaussian in the limits-0 or d—oe.

servation laws and the collision integral is represented in -~ ! X o
terms of the nonlinear diffusivity in the phase space. Our The probability density must satisfy the normalization

goal is to solve the more difficult equati¢oh4), (26) and find constraint:
all coefficientsa, b, c, etc.
f P(T_,rndT_=1. (29
lll. SOLUTION OF EQUATION OF MOTION We will be seeking the scale-invariant solution(@8)
To analyze this equation let us notice that when is
large enough, the collision integral can be rewritten using an P(T_,r)= F(x),

approximation: VS,(1)



where nowx=T_//Sy(r). It is clear from(29) that
j F(x)dx=1. (30

Since(28) is a nonlinear equation, the PDF is not deter-

mined up to an arbitrary constant and the normalization con-

dition serves as a constraint on the coefficiemt®, andc.
The equation for the second-order mom&y(r), obtained
from (28), gives

fsz(x)dx=l, (31)
which provides us with an additional condition:
m=a—c—bM=1, (32
where
sz F2(x)dx. (33
The equation folF(x) is
2a®x?+cd SFX) d baFZ(X) AXF(x)=0
(2ax“+cdé,) ax+§2 o +AxF(x)=0.
(34)

We have an equation with three unknown coefficients which

can be found from three constraints introduced above.
The tails of the PDRx—x) are evaluated readily:

_ 2
a2X2 Alda

F(x)oc( c

+1 (35

where A=2a?+2(¢,—d)a+adé,. This result can be ob-
tained directly from the Boltzmann equatig®7). One can
see that whe_ is large, the account of the higher-order
collisions does not change the result. The parametets
andc are functions of botlg,=2« and the space dimension-
ality d. Let us rewrite(34) as

2+c)

It is obvious that the most important parameter of the prob
lem is the ratio

3a
+|—+a-1

IF(X) IF?(x)
+b d

oX oX

aX

xF(x)=0.
(34)

o

When y—0 the tails of the solution to Eq34') decrease
somewhat more rapidly than Gaussian, while the central pal
is a little bit wider than that of the Gaussian distribution.
This is the only way to satisfy the constrair&0)—(33) stat-
ing that in the units, adopted in this wog=S,=1. This
means that the expansion introduced in this work does n
cover interesting close-to-Gaussian cases of large space
mensionalityd—o and the logarithmic theory witlg,—0.

To remedy this drawback one has to consider a more com-

plicated functionf(r, ) in Eq. (28).
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log1oF(x)

FIG. 1. Probability densit?(AT,r) plotted as a function of the
scaled variable for the parameters from set I.

In all parameters in34) are finite, the moments,, with
n>p=Al4a? are infinite. This does not pose any problem if
we recall that the theory developed above is valid only for
the scalar fluctuations Withlr _|<T, 6. If |[T_|>T, s, the
probability of bothT(2) and T(1)> T, is small and, as a
consequence, the functid®(T_,r) is a sharply decreasing
function, dominated by the single-poirtindependent prob-
ability densityP(T). In other words, the tails of the PDF of
velocity differences are described by the function

|

wherep(x) is a functionx decreasing withx so sharply that
all moments are finite. With this assumption the mom&its
with n>p can be evaluated readily with the result:

Trms

P(T_,r)~¢(r)¢>< (36)

Sn(r)ocr 2P~ De (37)

which means that the tail of the PDF, responsible for the
behavior of the high-order moments, is given by

Trms

P(T_ ,r)ocr(Zp‘l)“qb( (38)

with ¢(y) independent om. The physical interpretation of
this result is simple: Considér_>T,,s. The probability of
both |T(2)|> T, ms and |T(1)[> T, is very small. Thus, it

is a natural assumption that whgh_>T, . only one of the
values ofT(1) or T(2) is very large and another one is not.
The probability of such event is independent of the value of
r and is dominated by the single-point PIBXT).

Equation(34) has been solved numerically subject to con-
ﬁtraints(30)—(33) for the values of parameters used in nu-
merical experiments by ChdB] d=2; £,=2a=1/2. The so-
lution for a=1/1.234-5/8; b=—0.322 andc=1/2 (set )) is
presented in Figs. 1 and 2. The accuracy of the solution is
Qemonstrated by checking against the constraints derived

200
f F(x)dx=1.066,
—200
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JS2(rHXx) /Sa(m)H(x)

FIG. 4. The same as Fig. 2 for parameters from set II.
FIG. 2. The functiorH(AT,r) defined by(39) (set ).

300

200 F(x)dx=0.973
f x2F(x)dx=1.02. f—soo (x)dx ’
—200

The value of parametev evaluated numerically iM =0.43 J 300
and it is easy to check that for this case=1.07. Since by

(32) m=1, this result determines the accuracy of the calcu-

lation. The value of the scaling function at the oridii0) ~ andm=0.992. The PDF in the scale-invariant regime is
=1/1.290. It should be mentioned that the solution is ex-

tremely sensitive to the value of the coefficients: the 10— P(T_,r)ocr Vix—44

20 % modification of the numerical value of one of the

coefficients often leads to a few orders of magnitude changesgng the moments with>p=3.4 scale with the exponents
in the result. For these values of parameters the predicteg —3.4/4=0.85.

scaling of the moments with>p=5.4 is :

x2F(x)dx=1.005,
~300

As we see, the results are sensitive to the precise values of
parameters, b, andc but it is clear that for the Chen case

&
Snoxf [3] &~0.85-1.4 and the limiting order of the moment
- ; ; ; ~3.4-6.4.
with ¢€~5.4/4~1.35 and in the scale-invariant range the PDFP i
is Comparing Eqs(9) and(28) we see that
P(T_,r)ocr 184, _NS(r) B d In(F) JF
£,d H(T_)=ax+c o +2b X (39

The momentsS, with 0<n<5.4 obey the simple scaling

Sy 7én where £,=n/4. o _ When x is large this expression is similar to Kraichnan's
The best result satisfying all constrain@®0)—-(33) was  ¢onjecture(10) with the different value of the coefficient. In

obtained fora=1/1.8+5/8, b=—0.14, andc=0.24(set I).  {he region of smalk<1 the expression far (x), derived in

The results are presented in Figs. 3 and 4. For these values @gfis work, strongly deviates frorfi0), enabling the existence

parameters we have of the scale-invariant PDF. It should be stressed that all nu-
merical factors entering the equations of motion and the ex-
=T = : w pression foH(x) strongly depend on both space dimension-

ality d and the exponent of the velocity structure functign
It is clear from the derivation that expressi¢8o) is valid
only when both7/L <1 andT_<T,,,s and, as a consequence,
for any finite value of7/L it fails atx~T,,J/7". This predic-
tion can be easily checked numerically.

This work makes some predictions which can be verified
numerically. In the region of smak<1 andT_<T,,, all
curves

F(X)=r*P(T_/r®)

-4

log1oF (x) should collapse onto the same curve for any value of the
displacement from the inertial range. The tails of these
FIG. 3. The same as Fig. 1 for parameters from set Il.  curves strongly deviate from each other. Qualitative behavior
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X problem and led to various field-theoretical approaches, giv-
ing reasonably accurate predictions of the low-order statistics
in turbulent flows, while completely failing to describe ex-
perimentally observed intemittency dominating high-order
moments of the velocity differences. In a recent work on the
Burgers turbulence Polyakd¥] introduced a new principle:
the symmetries of the free, unforced, equation of motion are
restored only when bottVL <1 and|u(2)—u(1)|<U;ys- If
[u(2)—u(1)|>u,ms, the dissipation terms coupl&éu and
u(2)+u(l), thus leading to violation of Galileo invariance
of the unforced equation of motion. This statement is easy to
understand since for very large valye$2)—u(1)|~|u(2)

n r2 +u(1)| with high probability. In this range of variation of

logyo[r*P(T-,r)] the variable the PDF scales with,,s which is not Galileo
invariant. The Burgers turbulence is dominated by the shocks
FIG. 5. The functiom “P(T_ ,r) as a function of the separation and one can see that this assumption is naturally satisfied
distancer. (Schematicr >r,.) there.
A solution of the problem of a passive scalar, presented in
of the PDF’s plotted as a function of a scaled variable isthis work, is based on a similar assumption: only when
presented in Fig. 5. On the other hand, plotted as a functiofr _|<T,, andr/L<1 the invariance of the PDP(T_,r)

of ther-independent variable under the transformatiofi— T+ C, whereC is a constant, is
restored. If| T_|>T,,s, the PDF is dominated by a single-
1 b T point, r-independent probability density which is not invari-

r-Da -\ ant under constant shift of the variable The second as-

sumption about scale-invariant shape of the PDF, essential

all PDF’s should collapse in the regiofi_>T,,, and for the presented solution, enforces the “normal scaling” of
strongly deviate from each other near the origin<T,,s. the low-order moments and is consistent with the equations
The value of parameter= A/4a?, which determines the ex- of motion. The derived algebraically decreasing PDF ex-
ponents of all high-order structure functions depends on thglains strong intermittency and “anomalous scaling” of
parameters of the problem. high-order moments. However, at the present time we do not

To conclude this section let us discuss the role of thehave a solid theoretical ground to justify the assumption
approximations involved. Equatiof28) was obtained ne- about scale-invariance of the PDF in the vicinity of the ori-
glecting the multiple collisions in the collision integr@7).  gin|T_|<T,,s and one cannot rule out another scenario. For
It is easy to see that this approximation does not effect thexample, theD((r/L)?) contribution from the forcing func-
shape of the tails of the PDF since theretion has been neglected in the above derivation of PDF. In
S"IPY(T_)<P*(T_) for all n>2, whered is the width of ~ principle, it is not impossible that fo8,(r) with n—0 this
the interval contributing to the corresponding collision inte-term becomes important, generating a crossover to another
gral. Also, deriving(28) the binary collision term irf27) was ~ scaling of the lowest-order moments. This possibility, which
replaced byO(P?) contribution to(28) which is correct only  is somewhat bizarre, cannot be ruled out until all assump-
if the solution is broad enough near the origin. This assumptions involved in the derivation are verified. The numerical
tion has been tested by substitution of the numerical solutio@xperiments can be of great help here. | would like to em-
to (28) into the binary collision integral ii27). In the inter- ~ phasize the paramount importance of extremely accurate in-
val 0<x<1 the resulting expression was very close to itsvestigation of the PDRP(T_,r) in the vicinity of the top
approximation used in derivation ¢28). A similar conclu-  whereT_—0. This suggestion is in contrast with a typical
sion can be reached regarding the last ternf2@). In prin-  experimental emphasis on the properties of the tails respon-
ciple, the symmetries of the problem allow some other exSible for anomalous scaling.
pressions involving higher powers df(r)(d/dN). In the To conclude, | would like to discuss the recent theories of
scale-invariant regime in which we are interested, thes@ passive scalar by Gawedzid al. [8] and Chertkowet al.
terms lead to the high-order derivative®F (x)/ox™, which ~ [9]. Both papers present systematic expansions around
are small whery is large. Thus, these terms, if they do exist, Gaussian solutions which are possible in two limiting cases

cannot modify the algebraic tails of the PIBFXx). d—e [9] and £,=2 [8]. Both works have demonstrated the
anomalous scaling of the fourth-order structure functions

which is inconsistent with the normal scaling predicted in
this work. It is important to understand the reasons for the
The theories of homogeneous and isotropic forcedlifferences. Chertkoet al.[9] have considered an equation
Navier-Stokes turbulence are invariably based on the Kolfor general four-point correlation function in the limit of
mogorov assumption that all symmetries of the unforced Eularge space dimensionalitgi—cc. Using 18 as a small pa-
ler equations, including Galileo invariance, are restored irfameter, they have shown that the four-point correlation
the inertial range where separations between the points afgnction F,=(T(1)T(2)T(3)T(4)) scales under the trans-
small(r/L<1). This assumption introduced an important dy- formation r—ar as Fjxa®?[1+0(A, (log(a)/d))]F,
namical constraint on possible classes of solutions of thevhereA,=0(1). Then they concluded that, in fact, this rela-

IV. SUMMARY AND DISCUSSION
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tion is a first term of an expansion of the exponential, leading It is tempting to relate the limiting exponents of the struc-
to the anomalous scaling exponent of the fourth-order correture functions to geometrical characteristics of scalar field.
lation function equal to We know [4-7] that the driven Burgers equation gives all
S,ocr for n>1. The explanation of this fact is straightfor-
ward: the dominant contribution to the structure functions
comes from strong coherent shocks, which is the most
prominent dynamical feature of the system. In the scalar
The O(1/d°) contribution has been neglected in the limit theory, developed in this paper, the value of the limiting
d—oo, giving the nontrivial scaling exponent of the four- exponents depends on both space dimensionality and power
point correlation function. The result obtained[Bi is valid  of the velocity spectrum. The possibility of existence of the
only whend is large enough so that<d. Gawedzkii and  |arge-scale structures in the scalar field, dominating the high-

Kupiainen[8] considered a casg—0 and derived an anoma- order moments remains an open and interesting question.
lous scaling exponent similar to that of Rg®]. Their per-

turbation expansion is valid wher(n—2)n/d<<1. Thus, the
results of Refs[8] and[9] cannot be used to evaluate the
scaling exponents of the high-order structure functions when | would like to express my gratitude to A. Polyakov for

d is not too large ory is not too small. The theory presented the most stimulating and interesting discussions which influ-
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