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Passive scalar advected by a rapidly changing random velocity field:
Probability density of scalar differences

Victor Yakhot
Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544

20 November 1995; revised manuscript received 23 February 1996

The problem of a passive scalar advected by a correlated-in-time Gaussian random velocity field is consid-
ered. The equation for the probability densityP(DT,r ) of the scalar differences is derived. This equation
resembles the nonlinear Boltzmann equation reflecting the fact that the scalar fluctuations carried by the
velocity field along adjacent trajectories can interact due to the action of finite diffusivity. It is shown that the
probability density of the scalar differences has algebraic tails in the scale-invariant range and that the mo-
mentsSn5^(DT)n& with n,p obey ‘‘normal scaling’’Sn}r

nj1 with j15const, while all moments withn.p
behave asSn.p}r

j, where bothj andp depend on parameters of the problem.@S1063-651X~96!12608-8#

PACS number~s!: 47.10.1g, 02.50.2r
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I. INTRODUCTION

The recent surge in interest in the problem of a pass
scalar advected by a correlated-in-time random velocity fi
has been motivated by Kraichnan’s suggestion that the h
order moments of the scalar differences~structure functions!,
governed by this equation, scale asS2n[^(DT)2n&}r jn with
the exponentsj2n}A2n when n is large enough@1#. This
phenomenon is called ‘‘anomalous scaling’’ contrary to t
‘‘normal scaling’’ jn5nj0 , where j05const, equal to the
scaling exponent of one of the low-order structure functio
Kraichnan considered the equation for a passive scalar,

]T~x!

]t
1v i~x!

]T~x!

]xi
5 f ~x,t !1k

]2T~x!

]xi
2 , ~1!

where decorrelated-in-time incompressible velocity fie
¹ iv i50 is defined by the correlation function

v i~x,t !v j~x,t8!2v i~x,t !v j~x8,t8!}r nd~ t2t8! ~2!

and the forcing function~^f 2&51! acts at the large scale
only, so that its structure functionf(r )5@ f (x1r )2 f (x)#2

5O„(r /L)2… and is negligibly small in the inertial rang
where r /L!1. We denoteb(r )5^v22v(x)v(x8)&5r h, set
L51, and consider 0,h<2 in what follows. The equations
for the momentsS2n are derived from~1! with the result:

]S2n
]t

2
2

r d21

]

]r
r d211h

]S2n
]r

1J2n22n~2n21!

3S rL D 2S2n22 , ~3!

where

J2n52nk^@T~2!2T~1!#2n21~¹1
21¹2

2!@T~2!2T~1!#&.
~4!

To close the system of equations one has to calculate
correlation function~4!, which is a very difficult task. Based
on the symmetries of the problem and some qualitative c
siderations, Kraichnan postulated an expression:
551063-651X/97/55~1!/329~8!/$10.00
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n-

J2n52n
S2n~r !A~r !

S2~r !
, ~5!

where

A~r !5k„¹2S2~0!2¹2S2~r !….

Then, setting r /L50 in the inertial range and
A(r )5k¹2S2(0)521 gives

]S2n
]t

2
2

r d21

]

]r
r d211n

]S2n
]r

522n
S2n
S2

. ~6!

The most important feature of~6! is that it is a homogeneou
equation and one can calculate the scaling exponentsj2n by
simple power counting. Assuming that

S2n~r !5A2nr
j2n ~7!

gives Kraichnan’s scaling exponents:

j2n5
1
2 A4ndj21~d2j2!

22 1
2 ~d2j2!. ~8!

In the limit n@1 we havej2n5O(An). Whenn→0

j2n'
dj2n

d2j2
Þnj2 ~j2522h!.

Thus, the model does not generate scalar fluctuations
the structure functionsSn(r ) obeying ‘‘normal’’ scaling even
when n!1. For example, whenh54/3, j252/3, andd53,
the expression~8! gives j1/j2'0.55. Whenj2→2 this ratio
tends to 1/&. This property of Kraichnan’s is striking since
if correct, it makes the system governed by~1! very different
from anything encountered in real life and numerical flow
where normal scaling for some of the low-order mome
and anomalous scaling for the high-order ones is usu
reported and the observed ratioj2/j152 with a very good
accuracy.

Let us show that none of the Kraichnan exponents~8! can
be derived perturbatively in terms of powers of deviatio
from a scaling solution. It is easy to see@2# that Kraichnan’s
329 © 1997 The American Physical Society
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330 55VICTOR YAKHOT
suggestion corresponds to the following equation for
probability density function~PDF! P(DT,r ):

]P

]t
2

2

r d21

]

]r
r d211h

]P

]r
52

]

]DT
H~DT,r !P~DT,r !

1S rL D 2 ]2

]~DT!2
P~DT,r !,

~9!

whereH(DT,r ) is the conditional expectation value of th
operator

kS ]2

]x2
2 1

]2

]x1
2DDT

for fixed DT. Kraichnan’s closure is obtained from~9! ne-
glecting theO„(r /L)2… contribution and postulating

H~DT,r !52dj2DT/S2~r !. ~10!

In this expression we have setk¹2S2~0!521 so that in what
follows S2(r )5r j2.

We seek the zero-order solution of the equation of mot
in a scaling form:

P~DT,r !5
1

r a F~x!, ~11!

wherex5DT/r a with a5j2/2.0. The resulting equation fo
F(x) is

2a2x2F8~x!1AxF~x!50, ~11a!

whereA52a222(d2j2)a1dj2 . The constant in the righ
side of ~11! is chosen to be equal to zero sinceF(x)
5F(2x). The solution to this equation is

F~x!}x2m, ~12!

wherem5A/2a2. In a case, treated in the numerical expe
ments by Chen@3#, d52, j251/2, a5j1'1/4, A53/8, and
m53. We see that Kraichnan’s theory does not admit sca
solution~11! and thus, no perturbative treatment in terms
deviation from ‘‘normal’’ scaling is possible. TheO„(r /L)2…
contribution, neglected in the derivation of~11! regularizes
the theory leading to the anomalous scaling. It is difficu
however, to explain such a strong direct influence of
large-scale rapidly changing in time source on the iner
range
~r /L→0! dynamics of the scalar.

The purpose of this work is to present an alternative eq
tion of motion for the probability density of the scalar di
ferences, leading to the scale-invariant PDF but still giv
anomalous scaling of the high-order structure functions.
will explore some of the ideas which proved to be extrem
fruitful in investigation of the dynamics of the fluctuation
generated by the random-force-driven Burgers equation.
this problem a satisfactory dynamic theory has recently b
developed@4–7#. There it has been shown that the probab
ity density of the velocity differenceDu5u(2)2u(1) con-
sists of two contributions:Ps(Du,r )51/r aF(Du/r a), which
is responsible for the ‘‘normal scaling of the low-order m
e

n

-

g
f

,
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l

a-
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y
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n
-

ments,’’ and another one,Pa5rw(Du/urms) dominated by
the contribution from coherent structures giving rise to t
anomalous scaling. It is important thaturms is the
r -independent value of the rms single-point velocity fluctu
tions. The tails of the PDF are dominated byPa .

II. EQUATIONS FOR THE PROBABILITY DENSITY

Let us consider the generating function

Z25^el@T~2!2T~1!#&[^elT2&. ~13!

The equation of motion is

]Z2

]t
2

2

r d21

]

]r
r d211h

]Z2

]r
5J21l2S rL D 2Z2 ~14!

and

J25lk^@¹2
2T~2!2¹1

2T~1!#elT2&, ~15!

where¹ i5]/]xi andT( i )5T(xi). It will be useful for what
follows to introduce

Z15^el@T~2!1T~1!#&[^elT1&, ~16!

which obeys the following equation of motion:

]Z1

]t
2

2

r d21

]

]r
r d211h

]Z1

]r
5J112l2F12S rL D 2GZ1 ,

~17!

where

J15lk^@¹2
2T~2!1¹1

2T~1!#elT1&. ~18!

The main difficulty is in the evaluation of the correlatio
functionJ2 since it involves calculation of the infinite chai
of the correlation functions. Indeed, simple integration
parts in the relation~15! gives

J252l2^@eT~1!1eT~2!#elT2&. ~19!

We see that the equation for the PDF of the scalar differe
is not closed since we have to calculate the correlation fu
tion involving the dissipation rateseT . Substituting the equa
tion for the scalar variance into~19! we have to face the
difficulty of evaluating the correlation functions involvin
T2(2)2T2(1)5[T(2)2T(1)][T(2)1T(1)] andthus, as in
the problem of the Burgers equation, we have to deal w
correlation ofT25T(2)2T(1) with T15T(2)1T(1). The
origin of this difficulty can be traced to the fact that th
probability density of the scalar difference must be obtain
from the general two-point correlation function given by

Z125^el1T~1!1l2T~2!&5^elT21LT1& ~20!

in the limit r→0, wherel51
2~l22l1! andL51

2~l21l1!. It
will be shown below that the dissipation terms coupleT1

andT2 and that is why the calculation ofJ2 andJ1 is not a
simple matter.

Before we proceed further, let us discuss some con
quences of the relations presented above. First of all,
have in a statistically steady state:



r-

b

o

d

at

nal
t

ng

t

ar

ing
en
at-
his

s-

55 331PASSIVE SCALAR ADVECTED BY A RAPIDLY . . .
2

r d21

]

]r
r d211h

]Sn
]r

5n~n21!^@eT~1!1eT~2!#T2
n22&.

~21!

The equation forZ12 is

]Z12
]t

2
2

r d21

]

]r
r d211h

]Z12
]r

5J121l il j f ~ i ! f ~ j !Z12,

~22!

where

J125k^@l2¹2
2T~2!1l1¹1

2T~1!#elT21LT1&

or

J125k^$l@¹2
2T~2!2¹1

2T~1!#1L@¹2
2T~2!

1¹1
2T~1!#%elT21LT1&. ~23!

We can see that the generating functionZ12 can be repre-
sented as

Z125Z2Z1 , ~24!

provided

24r n
]Z1

]r

]Z2

]r
5J122Z2J1~L!2Z1J2~l! ~25!

with J12 defined by~23!. In general this assumption is inco
rect.

Now, following Polyakov @4#, we assume that in the
scale-invariant regime whenr→0 andT2!Trms the Fourier-
Laplace transform of the generating functionZ12~l,L! is
dominated by the range ofL5O(1/Trms)!1/T25O(l).
This means that onlyL→0 contributes toZ12, or, in other
words @4#,

Z12}d~L!.

The probability density in this limit (T2!Trms) can be
written as@4#

P„T~1!,T~2!…5PS T2

r a DWS T1

Trms
D .

This relation is equivalent to~24! and it is clear that it is
valid only whenT2 is small. WhenT2>Trms we can see
from the equation of motion that the variables cannot
separated and the probability densityP„T(1)2T(2)… is not
invariant under the transformationT→T1C since its tails
are dominated by the single-point PDFP(T). In other words,
the tails of the probability densityP(T2)}w(T2/Trms). The
importance of this very basic fact was noticed by Polyak
in the theory of the Burgers turbulence@4#.

In this limit the generating function

Z15^e2LT~1!eLT2&

leads to

P~T1 ,r !'@11c~r !#P~T/Trms!,
e

v

whereP(T/Trms) is the single-point probability density an
in the scale-invariant rangec(r )}(r /L)j1 with j15j2
@c(r )→0# when r→0. This assumption reflects the fact th
in the limit T20 andr→0 the PDFP(T1 ,r )→P(T). All this
gives

Z1'@11c~r /L !#Zs~LT!

and

Zs5^e2LT&.

Equations~14! and ~15! must follow ~23! in the limit r→0.
We assume that

J125@Z2J1~L!1Z1J2~l!#C~Z2 ,Z1!,

where the functionalC(Z1 ,Z2) is to be determined from
the theory. Substituting this expression into~25! we find

J2~l!5

24r n
]Z1

]r

]Z2

]r

Z1@C~Z1 ,Z2!21#
2Z2

J1~L!

Z1~L!
.

Using the approximate relations forZ1 , introduced above,
we can see that this expression defines a functio
J2(lT2 ,Z2), calculation of which is, in general, a difficul
task since we have to know the functionC. However, luck-
ily, one can arrive in the nontrivial conclusions, assumi
that J2(Z2) can be represented as a series:

J25l2~c1Z21bZ2
2 1dZ2

3 1••• !1la f~r !
]

]l
Z2 ,

~26!

which corresponds to the anzatz~L→0!:

C~Z2 ,Z1!}
Q~Z2!

r nc8~r /L !Z1
11.

The expression forQ~Z2! is found readily from~26!.
The last contribution to~26!, which appears in the lowes

order of the expansion in powers of smallT2 , was added
due to the following considerations. Take a simple line
equation:

]T~x!

]t
5 f ~x,t !1k

]2T~x!

]xi
2 .

The exact steady-state solution of this equation, obey
Gaussian statistics of the forcing function, can be writt
down immediately. The equation of motion for the gener
ing function of the scalar difference, corresponding to t
equation is

]Z2

]t
5J21l2S rL D 2Z2 .

Since we know the solution of the problem, the expre
sion for J2 is found readily and

l2^~D f !2&Z21
^~D f !2&
S2~r !

l
]

]l
Z250.
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332 55VICTOR YAKHOT
ÅThe expression forJ2 , defined by this equation, correspo
to the exact solution of a diffusion equation with Gauss
source in the right side. The linear equation of an advec
passive scalar can be represented in terms of the effe
~‘‘eddy’’ ! diffusivity easily extracted from~3!. The solution
of a problem would be a simple matter, if only the contrib
tions coming from ‘‘molecular diffusivity’’k could be ne-
glected. As we saw above this is not the case and theJ2

contribution, given by~26!, is vitally important. This is be-
cause the dynamics of a passive scalar consists of two c
peting processes. One is a mere kinematic advection
scalar which does not lead to the decay of its variance. T
process is accurately described by the effective diffusiv
The expansion in powers ofZ2 , introduced above, accoun
for an additional physical phenomenon, caused by the
lecular diffusivity, which means that we are looking for th
solution in terms of deviations from the zero-molecula
diffusivity trivial theory. The physical meaning of this ex
pansion becomes more clear if we write the equation for
probability densityP(T2 ,r ). In the units in whichS2(r )
5r j2, wherej2522h the equation of motion is

]P

]t
2

2

r d21

]

]r
r d211h

]P

]r
5adj2

]

]T2

T2

S2~r !
P~T2 ,r !

1c1dj2
]2

]T2
2 P~T2 ,r !

1bdj2
]2

]T2
2 E P~y,r !

3P~y2T2 ,r !dy1••• .

~27!

Now we can see that this equation is simply the Bol
mann equation for the probability densityP(T2 ,r ) taking
into account binary, triple, etc., collisions between the flu
tuations of the passive scalar. In the zero-diffusivity lim
when the scalar is merely carried around by the incompr
ible velocity field, the particles from the adjacent trajector
do not interact. Finite diffusivity, considered in this wor
introduces the ‘‘defects’’ allowing migration of the scal
between different trajectories, thus leading to transitio
(T2 ,r )→(T28 ,r ) described by the collision term in~27!. In
what follows we restrict ourselves to binary collisions on
and will show below that accounting for the multiple col
sion contributions does not change the shape of the tail
the PDF. It is interesting that this equation preserves all c
servation laws and the collision integral is represented
terms of the nonlinear diffusivity in the phase space. O
goal is to solve the more difficult equation~14!, ~26! and find
all coefficientsa, b, c, etc.

III. SOLUTION OF EQUATION OF MOTION

To analyze this equation let us notice that whenT2 is
large enough, the collision integral can be rewritten using
approximation:
s
n
d
ive

-

m-
a
is
.

o-

-

e

-

-

s-
s

s

of
n-
n
r

n

C5E P~y,r !P~y2T2 ,r !dy'E 8
P~y,r !P~y2T2 ,r !dy

1P~T2 ,r !,

where*8 is the integral over the range2T0,T,T0 giving
the dominant contribution to the normalization integral:

E P~x!dx51.

It will be shown below that near the origin the PD
P(T2) is a broad function ofT2 , so that we approximate th
first contribution to the right side of the equation for collisio
integralC as

E 8
P~y,r !P~y2T2 ,r !dy' f ~r !P2~T2!,

where f (r ) is easily found for the scale-invariant solution
~see below!. With these approximations we have the diffe
ential equation for the PDF:

]P

]t
2

2

r d21

]

]r
r d211h

]P~T2 ,r !

]r

5adj2
]

]T2

T2

S2~r !
P~T2 ,r !1cdj2

]2

]T2
2 P~T2 ,r !

1bdj2f ~r !
]2

]T2
2 P2~T2 ,r !, ~28!

wherec5c11b. Let us discuss the interesting casesh→0
andd→` corresponding to the Gaussian passive scalar
namics. Whenh50 the only possible velocity field isv50
and~1! and~2! describe the diffusivity-dominated linear dif
fusion problem. Whend→`, Eq. ~1! generates the scala
fluctuations corresponding to the weak-coupling Gauss
limit. In principle, we have to havef5 f (r ,h,d) such that
f (r ,h,d)→0 in the limitsh→0 ord→`. Then, Eq.~28! with
zero left side gives the desired Gaussian PDF. Whenh.0
but is small ord is finite but large, one can develop a pe
turbation expansion around this Gaussian state and eva
high-order moments of the scalar differences. This has b
done in important papers by Gawedzkiet al. @8# and Chert-
kov et al. @9#. In this work we are interested in the case
h5O~1! which is far from a pure diffusive Gaussian limi
Thus, in fact, Eq.~28! is based on an additional assumptio
that the function f (r ,h,d) has a universal,h- and
d-independent limit and setf (r ,h,d)5 f (r ) in Eq. ~28!. It is
clear that the scale-invariant solution of~28! derived below
does not tend to a Gaussian in the limitsh→0 or d→`.

The probability density must satisfy the normalizatio
constraint:

E P~T2 ,r !dT251. ~29!

We will be seeking the scale-invariant solution of~28!

P~T2 ,r !5
1

AS2~r !
F~x!,
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55 333PASSIVE SCALAR ADVECTED BY A RAPIDLY . . .
where nowx5T2/AS2(r ). It is clear from~29! that

E F~x!dx51. ~30!

Since~28! is a nonlinear equation, the PDF is not dete
mined up to an arbitrary constant and the normalization c
dition serves as a constraint on the coefficientsa, b, andc.
The equation for the second-order momentS2(r ), obtained
from ~28!, gives

E x2F~x!dx51, ~31!

which provides us with an additional condition:

m5a2c2bM51, ~32!

where

M5E F2~x!dx. ~33!

The equation forF(x) is

~2a2x21cdj2!
]F~x!

]x
1dj2b

]F2~x!

]x
1AxF~x!50.

~34!

We have an equation with three unknown coefficients wh
can be found from three constraints introduced above.

The tails of the PDF~x→`! are evaluated readily:

F~x!}S 2a2x2

cdj2
11D 2A/4a2

, ~35!

whereA52a212(j22d)a1adj2 . This result can be ob
tained directly from the Boltzmann equation~27!. One can
see that whenT2 is large, the account of the higher-ord
collisions does not change the result. The parametersa, b,
andc are functions of bothj252a and the space dimension
ality d. Let us rewrite~34! as

S a

d
x21cD ]F~x!

]x
1b

]F2~x!

]x
1S 3a

d
1a21D xF~x!50.

~348!

It is obvious that the most important parameter of the pr
lem is the ratio

g5
a

d
.

When g→0 the tails of the solution to Eq.~348! decrease
somewhat more rapidly than Gaussian, while the central
is a little bit wider than that of the Gaussian distributio
This is the only way to satisfy the constraints~30!–~33! stat-
ing that in the units, adopted in this workS05S251. This
means that the expansion introduced in this work does
cover interesting close-to-Gaussian cases of large spac
mensionalityd→` and the logarithmic theory withj2→0.
To remedy this drawback one has to consider a more c
plicated functionf (r ,h) in Eq. ~28!.
-
-

h

-

rt
.

ot
di-

-

In all parameters in~34! are finite, the momentsSn with
n.p5A/4a2 are infinite. This does not pose any problem
we recall that the theory developed above is valid only
the scalar fluctuations withuT2u!Trms . If uT2u.Trms , the
probability of bothT~2! andT(1)@Trms is small and, as a
consequence, the functionP(T2 ,r ) is a sharply decreasing
function, dominated by the single-pointr -independent prob-
ability densityP(T). In other words, the tails of the PDF o
velocity differences are described by the function

P~T2 ,r !'c~r !wS T2

Trms
D , ~36!

wherew(x) is a functionx decreasing withx so sharply that
all moments are finite. With this assumption the momentsSn
with n.p can be evaluated readily with the result:

Sn~r !}r ~2p21!a, ~37!

which means that the tail of the PDF, responsible for
behavior of the high-order moments, is given by

P~T2 ,r !}r ~2p21!afS T2

Trms
D ~38!

with f(y) independent onr . The physical interpretation o
this result is simple: ConsiderT2@Trms . The probability of
both uT(2)u@Trms and uT(1)u@Trms is very small. Thus, it
is a natural assumption that whenuT2@Trms only one of the
values ofT~1! or T~2! is very large and another one is no
The probability of such event is independent of the value
r and is dominated by the single-point PDFP(T).

Equation~34! has been solved numerically subject to co
straints~30!–~33! for the values of parameters used in n
merical experiments by Chen@3# d52; j252a51/2. The so-
lution for a51/1.23715/8; b520.322 andc51/2 ~set I! is
presented in Figs. 1 and 2. The accuracy of the solutio
demonstrated by checking against the constraints der
above:

E
2200

200

F~x!dx51.066,

FIG. 1. Probability densityP(DT,r ) plotted as a function of the
scaled variable for the parameters from set I.
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E
2200

200

x2F~x!dx51.02.

The value of parameterM evaluated numerically isM50.43
and it is easy to check that for this casem51.07. Since by
~32! m51, this result determines the accuracy of the calcu
lation. The value of the scaling function at the originF~0!
51/1.290. It should be mentioned that the solution is ex
tremely sensitive to the value of the coefficients: the 10
20 % modification of the numerical value of one of the
coefficients often leads to a few orders of magnitude chang
in the result. For these values of parameters the predict
scaling of the moments withn.p55.4 is

Sn}r
j

with j'5.4/4'1.35 and in the scale-invariant range the PDF
is

P~T2 ,r !}r21/4x26.4.

The momentsSn with 0,n,5.4 obey the simple scaling
Sn}tjn wherejn5n/4.

The best result satisfying all constraints~30!–~33! was
obtained fora51/1.815/8, b520.14, andc50.24 ~set II!.
The results are presented in Figs. 3 and 4. For these values
parameters we have

FIG. 2. The functionH(DT,r ) defined by~39! ~set I!.

FIG. 3. The same as Fig. 1 for parameters from set II.
-

-
–

es
ed

of

E
2300

300

F~x!dx50.973,

E
2300

300

x2F~x!dx51.005,

andm50.992. The PDF in the scale-invariant regime is

P~T2 ,r !}r21/4x24.4

and the moments withn.p53.4 scale with the exponents
jn53.4/450.85.

As we see, the results are sensitive to the precise values
parametersa, b, andc but it is clear that for the Chen case
@3# jn'0.8521.4 and the limiting order of the moment
p'3.426.4.

Comparing Eqs.~9! and ~28! we see that

2
AS2~r !

j2d
H~T2!5ax1c

] ln~F !

]x
12b

]F

]x
. ~39!

When x is large this expression is similar to Kraichnan’s
conjecture~10! with the different value of the coefficient. In
the region of smallx!1 the expression forH(x), derived in
this work, strongly deviates from~10!, enabling the existence
of the scale-invariant PDF. It should be stressed that all nu
merical factors entering the equations of motion and the ex
pression forH(x) strongly depend on both space dimension-
ality d and the exponent of the velocity structure functionj2.
It is clear from the derivation that expression~39! is valid
only when botht/L!1 andT2!Trms and, as a consequence,
for any finite value oft/L it fails at x'Trms/t

a. This predic-
tion can be easily checked numerically.

This work makes some predictions which can be verified
numerically. In the region of smallx!1 andT2!Trms all
curves

F~x!5r aP~T2 /r a!

should collapse onto the same curve for any value of th
displacementr from the inertial range. The tails of these
curves strongly deviate from each other. Qualitative behavio

FIG. 4. The same as Fig. 2 for parameters from set II.
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of the PDF’s plotted as a function of a scaled variable
presented in Fig. 5. On the other hand, plotted as a func
of the r -independent variable

1

r ~2p21!a PS T2

Trms
,r D

all PDF’s should collapse in the regionT2@Trms and
strongly deviate from each other near the originT2!Trms .
The value of parameterp5A/4a2, which determines the ex
ponents of all high-order structure functions depends on
parameters of the problem.

To conclude this section let us discuss the role of
approximations involved. Equation~28! was obtained ne-
glecting the multiple collisions in the collision integral~27!.
It is easy to see that this approximation does not effect
shape of the tails of the PDF since the
dn21Pn(T2)!P2(T2) for all n.2, whered is the width of
the interval contributing to the corresponding collision in
gral. Also, deriving~28! the binary collision term in~27! was
replaced byO(P2) contribution to~28! which is correct only
if the solution is broad enough near the origin. This assum
tion has been tested by substitution of the numerical solu
to ~28! into the binary collision integral in~27!. In the inter-
val 0,x,1 the resulting expression was very close to
approximation used in derivation of~28!. A similar conclu-
sion can be reached regarding the last term in~26!. In prin-
ciple, the symmetries of the problem allow some other
pressions involving higher powers off (r )~]/]l!. In the
scale-invariant regime in which we are interested, th
terms lead to the high-order derivatives]mF(x)/]xm, which
are small whenx is large. Thus, these terms, if they do exi
cannot modify the algebraic tails of the PDFF(x).

IV. SUMMARY AND DISCUSSION

The theories of homogeneous and isotropic forc
Navier-Stokes turbulence are invariably based on the K
mogorov assumption that all symmetries of the unforced
ler equations, including Galileo invariance, are restored
the inertial range where separations between the points
small ~r /L!1!. This assumption introduced an important d
namical constraint on possible classes of solutions of

FIG. 5. The functionr aP(T2 ,r ) as a function of the separatio
distancer . ~Schematic:r 1.r 2 .!
s
n

e

e

e
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-
n

-

e

,

d
l-
-
n
re

e

problem and led to various field-theoretical approaches, g
ing reasonably accurate predictions of the low-order statis
in turbulent flows, while completely failing to describe e
perimentally observed intemittency dominating high-ord
moments of the velocity differences. In a recent work on
Burgers turbulence Polyakov@4# introduced a new principle
the symmetries of the free, unforced, equation of motion
restored only when bothr /L!1 anduu(2)2u(1)u!urms . If
uu(2)2u(1)u.urms , the dissipation terms coupleDu and
u(2)1u(1), thus leading to violation of Galileo invarianc
of the unforced equation of motion. This statement is eas
understand since for very large valuesuu(2)2u(1)u'uu(2)
1u(1)u with high probability. In this range of variation o
the variable the PDF scales withurms which is not Galileo
invariant. The Burgers turbulence is dominated by the sho
and one can see that this assumption is naturally satis
there.

A solution of the problem of a passive scalar, presente
this work, is based on a similar assumption: only wh
uT2u!Trms and r /L!1 the invariance of the PDFP(T2 ,r )
under the transformationT→T1C, whereC is a constant, is
restored. IfuT2u@Trms , the PDF is dominated by a single
point, r -independent probability density which is not invar
ant under constant shift of the variableT. The second as-
sumption about scale-invariant shape of the PDF, esse
for the presented solution, enforces the ‘‘normal scaling’’
the low-order moments and is consistent with the equati
of motion. The derived algebraically decreasing PDF e
plains strong intermittency and ‘‘anomalous scaling’’
high-order moments. However, at the present time we do
have a solid theoretical ground to justify the assumpt
about scale-invariance of the PDF in the vicinity of the o
gin uT2u!Trms and one cannot rule out another scenario. F
example, theO„(r /L)2… contribution from the forcing func-
tion has been neglected in the above derivation of PDF
principle, it is not impossible that forSn(r ) with n→0 this
term becomes important, generating a crossover to ano
scaling of the lowest-order moments. This possibility, whi
is somewhat bizarre, cannot be ruled out until all assum
tions involved in the derivation are verified. The numeric
experiments can be of great help here. I would like to e
phasize the paramount importance of extremely accurate
vestigation of the PDFP(T2 ,r ) in the vicinity of the top
whereT2→0. This suggestion is in contrast with a typic
experimental emphasis on the properties of the tails resp
sible for anomalous scaling.

To conclude, I would like to discuss the recent theories
a passive scalar by Gawedzkiet al. @8# and Chertkovet al.
@9#. Both papers present systematic expansions aro
Gaussian solutions which are possible in two limiting ca
d→` @9# and j252 @8#. Both works have demonstrated th
anomalous scaling of the fourth-order structure functio
which is inconsistent with the normal scaling predicted
this work. It is important to understand the reasons for
differences. Chertkovet al. @9# have considered an equatio
for general four-point correlation function in the limit o
large space dimensionality:d→`. Using 1/d as a small pa-
rameter, they have shown that the four-point correlat
function F45^T(1)T(2)T(3)T(4)& scales under the trans
formation r→ar as F48}a

2j2@11O(D4 (log(a)/d))#F4

whereD45O~1!. Then they concluded that, in fact, this rel



in
rr

it
r-

-

e
he
d
e
io

o

c-
ld.
ll
r-
ns
ost
lar
ng
wer
he
igh-
n.

r
flu-
rue,
a-
ate-
ts

336 55VICTOR YAKHOT
tion is a first term of an expansion of the exponential, lead
to the anomalous scaling exponent of the fourth-order co
lation function equal to

j̄ 452j22
D4

d
1O~1/d2!

TheO(1/d2) contribution has been neglected in the lim
d→`, giving the nontrivial scaling exponent of the fou
point correlation function. The result obtained in@9# is valid
only whend is large enough so thatn!d. Gawedzkii and
Kupiainen@8# considered a caseh→0 and derived an anoma
lous scaling exponent similar to that of Ref.@9#. Their per-
turbation expansion is valid whenn(n22)n/d!1. Thus, the
results of Refs.@8# and @9# cannot be used to evaluate th
scaling exponents of the high-order structure functions w
d is not too large orh is not too small. The theory presente
in this paper assumes that far from a Gaussian limit th
exist a range of parameters for which a universal relat
S0(x)5S2(x)51 wherex5T2 /AS2(r ) holds. If this is so,
then the scale-invariant PDF of the scalar differences is p
sible in the rangeT2!Trms and r /L!1.
g
e-

n

re
n

s-

It is tempting to relate the limiting exponents of the stru
ture functions to geometrical characteristics of scalar fie
We know @4–7# that the driven Burgers equation gives a
Sn}r for n@1. The explanation of this fact is straightfo
ward: the dominant contribution to the structure functio
comes from strong coherent shocks, which is the m
prominent dynamical feature of the system. In the sca
theory, developed in this paper, the value of the limiti
exponents depends on both space dimensionality and po
of the velocity spectrum. The possibility of existence of t
large-scale structures in the scalar field, dominating the h
order moments remains an open and interesting questio
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